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Abstract 

Three strategies for linking two consecutive assessments are investigated and compared by 

analyzing reading data for the National Assessment of Educational Progress (NAEP) using the 

general diagnostic model. These strategies are compared in terms of marginal and joint 

expectations of skills, joint probabilities of skill patterns, and item parameter estimates. The 

results indicate that fixing item parameter values at their previously calibrated values is sufficient 

to establish a comparable scale for the subsequent year. 

Key words: General diagnostic model, concurrent calibration, linking strategies, National 

Assessment of Educational Progress, marginal expectation, joint expectation, joint probability 
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1. Introduction 

Cognitive diagnosis models (Tatsuoka, 1983; DiBello, Stout, & Roussos, 1995; Maris, 

1999; Junker & Sijtsma, 2000; von Davier, 2005; von Davier & Rost, 2006) have been developed 

for in-depth analysis of item response data. In such models, the latent abilities or skill profiles are 

represented by a discrete set of real valued numbers. For example, one can specify {0, 1} for skill 

spaces with mastery/nonmastery status or {-4.0, -3.8, -3.6, …, 3.6,3.8,4.0} for skill spaces with 

more than two levels emulating unidimensional item response theory (IRT) models. The 

noncontinuous nature of the skill profiles makes the linking across assessments nontrivial. It is 

appropriate to use a linking strategy in IRT models based on linear transformations when the 

ability distribution is assumed to follow a standard normal distribution. However, the linear linking 

approach might not be appropriate for discrete latent skills. The primary goal of this paper is to 

compare three proposed linking strategies with respect to various aspects by using a general 

diagnostic model with discrete skill profiles. The paper is organized as follows: section 2 gives a 

brief introduction of the model, section 3 introduces three proposed linking strategies, section 4 

introduces the data, section 5 shows the results, and section 6 includes key subgroup analysis 

results. A brief discussion and conclusion are included in section 7.  

2. General Diagnostic Models 

The general diagnostic model (GDM; von Davier, 2005) was introduced as a framework 

to integrate approaches involving confirmatory multidimensional models with discrete latent trait 

variables. Within the GDM framework, the flexible form of the functioning of skills (cognitive 

attributes) allows specification of many well-known psychometric models, such as IRT models 

(Lord, 1980), the fusion model (Hartz, 2002; DiBello et al., 1995), and mixture IRT models (for 

an overview, see von Davier & Rost, 2006). The special form of the GDM that we used in our 

study, suitable for dichotomous and partial credit data, was given by 

1

1 1

exp[ ]
( | , , , )

1 exp[ ]i

K
xi ik ik kk

i i i m K
yi ik ik ky k

x q
P X x q

y q

β γ α
β α γ

β γ α
=

= =

+
= =

+ +
∑

∑ ∑
 (1) 

In this equation,  is an entry of the Q-matrix, which specifies the correspondence 

between item i  and skill k . If skill k is required to solve item i, then
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The total number of skills is denoted by K. The Q-matrix is prespecified by content area experts 

and represents a hypothesis about the relationship between students’ skills and students’ item 

responses.  

In Equation 1, y is an index for possible scores for item i , and denotes the maximum 

score for this item. According to Equation 1, the probability of obtaining score 

im

x on item i  

depends on the item parameters xiβ , yiβ , ikγ , and the student skill profile kα . In this model, the 

values kα  take on a finite set of real valued numbers that are set by the user in his or her model 

specification. Similar to IRT models, the GDM requires that certain conditions are met to remove 

the indeterminacy of the scale. There are different methods to determine a scale: Either one 

difficulty parameter (for example 11 0β = ) as well as some or all slopes (e.g., 11 1γ =  and 1 0kγ =  

for K >1) are fixed to a certain constant or the mean of the difficulties as well as the (log)-

average of the slopes are set to constant values. Alternatively, in models with several ability 

levels, the mean and variance of the ability variables can be fixed to certain values, much like the 

commonly used assumption of a standard normal distribution in IRT models.  

3. Linking Strategies 

Trend maintenance is an important concept in most large scale assessments with multiple 

cycles. A considerable portion of items is common across two consecutive assessments to 

establish or continue the trend. For the rest of this paper, these two consecutive assessments are 

denoted by Y1 and Y2 in chronological order. The scale of Y1 is assumed to have been 

established from a previous calibration before considering the linkage between Y1 and Y2. This 

previous calibration of Y1 is denoted as Y1 calibration throughout this paper.  

A concurrent calibration strategy is used in the operational linking analysis of National 

Assessment of Educational Progress (NAEP) data (Mislevy, 1992; Muraki & Hombo, 1999). 

This linking strategy includes three steps to build a linkage between Y1 calibration and Y2. In the 

first step, a common scale for Y1 and Y2 is established through a concurrent calibration of the 

data from Y1 and Y2 with common items set to have the same item parameter estimates. As a 

result, we obtain the mean and variance of the latent ability for students in Y1 and Y2 in the 

concurrent calibration. In the second step, a bridge between the Y1 calibration and the concurrent 

calibration is set by finding a linear transformation that will make the mean and variance of the 

latent ability equal for students in Y1 from both calibrations. Finally, in the third step, the link 
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between Y1 calibration and Y2 is established by applying this linear transformation to Y2 from 

the concurrent calibration.  

This concurrent calibration strategy is valid when the latent ability is assumed to follow a 

normal distribution, since for normal distributions, any two distributions can be perfectly 

matched by a location and scale transformation. This is not true for more general distributions, 

for example, distributions that require more than three or more parameters to be specified fully. 

In addition, Haberman (2005) has shown that the attempts to use two-parameter-logistic (2PL) 

and three-parameter-logistic (3PL) models with more general ability distributions than the 

standard normal distribution require quite careful work. However, the linear transformation in 

steps 2 and 3 is not appropriate for discrete latent variables. For example, if the latent skill kα is 

prespecified to have six real-valued levels, {-2, -1, -0.5, 0.5, 1, 2}, any linear transformations 

other than identity (slope = 1 and intercept = 0) and negative identity (slope = -1 and intercept = 

0) are not valid. A linear transformation with slope = 2 and intercept = 0 leads to a set of {-4,-2,-

1, 1, 2, 4}, which is out of the range of the original set of kα . So in developing the linking 

strategy under discrete latent trait models, we have to use methods that avoid the need for linear 

transformations.  

Three strategies are considered in this paper. In fact, all three strategies proposed are 

based on the concurrent calibration described above. Strategy 2 is indeed the first step of the 

concurrent calibration linking. Obviously, Strategy 2 cannot establish a good link since steps 2 

and 3 are missing. But it is included for the comparison with Strategy 1. Strategy 1 is considered 

to be more stringent than Strategy 2 since the parameter estimates for the common items are 

fixed as those in Y1 calibration. Strategy 3 also relies on a strong assumption on the role of the 

common items. We hypothesize that the common items are sufficient enough to build a link 

between Y1 calibration and Y2. Strategies 1 and 3 will be the same when no constraints are 

imposed on item parameters. However, certain constraints must be imposed in many situations in 

order to make the models identifiable. These constraints make Strategies 1 and 3 different; 

although in most cases the differences are small. 

The details of these three linking strategies are listed below.  

• Linking Strategy 1: Under this strategy, Y1 and Y2 are calibrated concurrently with 

the common items fixed at the values obtained from the Y1 calibration. This 
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calibration will not re-estimate the item parameters of the common items for Y2, but 

rather it will assume the parameters of these items are fixed at known values. In 

addition, items not common to Y1 and Y2 will be reestimated in a joint calibration 

with unique sets of parameters for each of the years. 

• Linking Strategy 2: This strategy is to calibrate Y1 and Y2 concurrently with the 

common items set to be equal across the two years. This procedure will reestimate all 

item parameters in a joint calibration while assuming that the parameters of items 

common to Y1 and Y2 are equal and do not change over assessment cycles. 

• Linking Strategy 3: The link is established by a strategy in which the Y2 assessment 

data is calibrated separately, with common items fixed at the values obtained from 

the Y1 calibration.  

4. Data, Analysis, and Results 

Before the analysis, we would like to discuss the criteria used in evaluating different 

strategies. Within an IRT modeling framework, a good recovery of the basic characteristics of Y1 

is often used as the criterion for a good linking. For example, in a concurrent calibration, the 

rationale for Steps 2 and 3 is to make sure that the characteristics of Y1 stay the same from Y1 

calibration to the concurrent calibration. If a normal distribution is assumed for the latent ability 

in IRT models, the mean and variance are sufficient to maintain the shape of the latent ability. 

However, the mean and variance are no longer sufficient for a discrete latent skill distribution. 

When we estimate multidimensional skills simultaneously, the joint probabilities should be 

estimated in order to describe the characteristics of the latent skill distributions. In this study, in 

addition to the joint probability distributions, we will also report the joint expectation of latent 

skills, and the marginal probability of skills for key subgroups as the criteria to evaluate the three 

different linking strategies. 

Data 

The data used to compare these three linking strategies were taken from data on two 

NAEP Grade 4 reading assessments. One dataset contained a subset of the 2003 assessment data, 

and the other dataset was a subset of the 2005 assessment. The dataset from 2003 contained 

47,817 students’ responses to 102 items under a partially balanced incomplete block (pBIB) 
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design from two subscales (K=2): reading for literary experience and reading to gain 

information. The 2005 dataset included 41,420 students’ responses to 99 items under the pBIB 

design employing the same two subscales. There were 69 items in common to these two 

assessments. The data from 2003 was assumed to be Y1, while the data from 2005 served as the 

Y2 data. 

Analysis and Results 

Each item in both the Y1 and Y2 data was assigned to exactly one of the two reading 

subscales: reading for literary experience and reading for information. The correspondence 

between items and subscales serves as a Q-matrix in our analysis. This setting is equivalent to a 

two-dimensional IRT model with simple structure represented by the allocation of each item to 

only one of the subscales. Since model comparisons are not a focus of this paper, no other 

alternative Q-matrices were considered in this linking study. The primary goal of the comparison 

between Strategies 1 and 2 is to see whether Strategy 1 can reproduce the scale set by Y1 

calibration. If Strategy 1 outperforms Strategy 2, the comparison between Strategies 1 and 3 is to 

see whether the release of concurrent calibration in Strategy 3 will make the recovery of Y1 

characters possible. The following result sections are organized as follows: comparison between 

Strategies 1 and 2, comparison among the three strategies, and comparisons in terms of key 

subgroup statistics.  

Comparison I: Strategy 1 versus Strategy 2. The comparisons in this section are based on 

the use of fit statistics, the joint probabilities of skill patterns, and the joint and marginal 

expectations of skills. The fit statistics used in this study include the log-likelihood and the 

Akaike information criterion (AIC; Akaike, 1974) index. The AIC is defined as 2 ln( ) 2L p− + , 

where ln( )L  is the log-likelihood of the data under the model and is the number of parameters 

in the model. For a given dataset, the larger the log-likelihood, the better the model fit; the 

smaller the AIC value, the better the model fit. Information on model fit statistics is given in 

Table 1. Note that the number of parameters is much smaller for Strategy 1, which is due to the 

fact that the parameters for common items have been fixed as known from the 2003 separate 

calibration. Therefore, it can be argued that the actual count of parameters is unknown for this 

model, since it involves the 2003 data, which has been separately used to determine the common 

p
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item parameters in this strategy. Nevertheless, a comparison solely in terms of likelihood 

indicates that the differences between the two strategies are not huge for these calibrations. 

Table 1 

Model Fit Comparisons for Strategies 1 and 2 

Linking Model parameters Log-likelihood AIC 

Strategy 1 165 -994579.93  1989469 

Strategy 2 321 -993799.31 1988200 

Note. AIC = Akaike information criterion. 

Figure 1 compares the estimated joint probabilities of skill patterns for data 2003 (Y1) 

obtained from using Strategies 1 and 2 with those from separate calibration of 2003 (Y1 

calibration). All the estimated joint probabilities should be very close to each other if a common 

scale is maintained across calibrations. Within each plot, the x-axis stands for the estimated joint 

probability of skill patterns for 2003 sample from Y1 calibration, while the y-axis represents the 

corresponding probability from either using Strategy 1 or Strategy 2. The left panel gives the 

contrast between the separate calibration and Strategy 1, while the right panel gives the contrast 

between the separate calibration and Strategy 2.  

 
Figure 1. Joint probability comparison for 2003. 
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Figure 2 shows the estimated joint expectation of skills for the 2003 students under 

Strategies 1 and 2 against those from Y1 calibration. This expectation is calculated by 

1 2( | )jE α α ν  for each person jν . The estimates for the same students from different methods 

should be very close to each other if a common scale is maintained. Again within each plot, the 

x-axis stands for the estimated joint expectation for the 2003 sample from the Y1 calibration, 

while the y-axis represents the corresponding expectation from using either Strategy 1 or 

Strategy 2. 

 
Figure 2. Joint expectation comparison for 2003 data. 

Figure 3 presents the differences in marginal skill expectations for 2003 students in the 

form of boxplots. Specifically, the left graph shows the difference between Y1 calibration and 

the use of Strategy 1, while the right graph represents the difference between Y1 calibration and 

the use of Strategy 2. The numbers 1 and 2 along the x-axis in each graph represent the two 

reading subscales. The marginal expectation for skill  is calculated by k ( | )k jE α ν  for each 

person jν . It is important to note that the scale of the difference in the right graph is about 10 

times greater than that in the left graph. 

It can be observed from Figures 1 to 3 that the deviations from Y1 calibration in terms of 

various statistics are smaller when using Strategy 1 as compared to Strategy 2. Even though 

concurrent calibration (Strategy 2) produced a common scale for 2003 and 2005, it may not 

produce the same scale as that established from Y1 calibration. Compared to Strategy 2, Strategy 
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1 utilizes a stronger link to connect these two consecutive assessments by using concurrent 

calibration coupled with fixed common item parameter values. Therefore, Strategy 1 shows 

much smaller deviations from the Y1 calibration than Strategy 2 does.  

 
Figure 3. Marginal expectation comparison for 2003 data. 

One might argue that the above results might not be true when fewer common items exist 

between the two tests. To answer this question, we investigated the case where only 25 items 

were common to two years. These 25 items were randomly selected from the original 69 

common items. Table 2 gives the model fit information for these analyses. Again, due to the 

fixing of item parameters in Strategy 1, the number of parameters shown in Table 2 for Strategy 

1 is not accurate. Nevertheless, the difference between AIC is not large for these two strategies. 

Figures 4 to 6 show the results corresponding to Figures 1 to 3 for the 25 common items. 

Table 2 

Model Fits of Strategies 1 and 2 With Only 25 Common Items 

Model Parameters Log-likelihood AIC 

Strategy 1 369 -993,761.63  1988215 

Strategy 2 424 -993,408.44 1987612 

Note: AIC = Akaike information criterion. 
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Figure 4. Joint probability comparison for 2003 with 25 common items. 

 
Figure 5. Joint expectation comparison for 2003 with 25 common items. 

 
Figure 6: Marginal expectation comparison for 2003 with 25 common items. 
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Figures 4 to 6 present results that are similar to those in Figures 1 to 3. This would seem 

to indicate that the scale established by Strategy 1 is robust even in the case where fewer 

common items exist.  

Comparison II: Three strategies. The comparisons in this section are meant to investigate 

whether we can establish the link between an assessment from two different years by dropping 

concurrent calibration and only using fixed item parameters for subsequent calibrations. In our 

case, this would mean that the common item parameters obtained from Y1 calibration could be 

applied directly to the analysis of 2005 data. In this section, the comparison was conducted by 

using the following: item parameter estimates, model fit, and marginal skill expectations. In 

addition, this comparison was investigated when either 69 common items or 25 common items 

existed between the two tests. 

The difference in joint probabilities of skill patterns between 2005 students and 2003 

students under three different strategies are shown in Figure 7 in the form of boxplots. The 

numbers shown along the x-axis in Figure 7 stand for strategy ID (i.e. Strategy 1, 2, or 3). If a 

scale identical to that from the 2003 separate calibration could be set up by Strategy 3, then the 

boxplots for Strategy 1 and Strategy 3 should be similar to each other. Otherwise, boxplots for 

Strategy 1 and Strategy 2 should be similar to each other. It turns out that the former is found in 

this study. A similar result is obtained when there are 25 common items, as shown in Figure 8. 

 
Figure 7. Joint probability comparison: 2005 minus 2003. 
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Figure 8. Joint probability comparison: 2005 minus 2003 with 25 common items. 

The marginal skill expectations obtained from Strategies 1 and 2 are compared with those 

from Strategy 3 via boxplots shown in Figures 9 and 10. In each graph, numbers 1 and 2 along 

the x-axis stand for the two subscales measured in reading. The left graph presents the difference 

between Strategies 3 and 1, while the right panel illustrates the difference between Strategies 2 

and 1. If an identical scale is established through fixing item parameter values, and not by 

concurrent calibration, then the difference between Strategies 1 and 3 should be smaller than the 

difference between Strategies 1 and 2. The results confirm this, since the boxplots for both 

reading subscales shown in the left graph are much more concentrated around 0 than those in the 

right graph.  

 
Figure 9. Marginal expectation comparison for 2005 data. 
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Figure 10. Marginal expectation comparison for 2005 data with 25 common items. 

The comparisons in this section indicate that a scale identical to the 2003 separate 

calibration can be reproduced in the 2005 separate calibration by fixing the common item 

parameters at the estimates obtained from the 2003 separate calibration.  

6. Key Subgroups Comparison 

Statistics for key subgroups, such as the mean, standard deviation, and quantiles of 

subgroups, are important to consider for operational NAEP reporting purposes. In the framework 

of cognitive diagnosis, skill distributions for key subgroups at an equivalent aggregation level 

could be considered for NAEP reporting. In this paper, skill distributions of several key 

subgroups (race/ethnicity and gender) in the 2005 assessment are compared across linking 

strategies. Also, the skill profiles of key subgroups in the 2003 assessment are compared across 

strategies and with those obtained from the separate calibration of 2003. Since the results of the 

case with 25 common items and the case with 69 common items were again similar to each 

other, we only report the results of the case with 25 common items. 

In the following comparisons, the skill profiles for subgroups were derived based on a 

single-group assumption. That is, all subgroups were set to have the same prior distribution for 

the latent classes. Then the skill profile for a subgroup was calculated by taking a weighted 

average of the skill profiles of students in the subgroup, where the weights were the student 

weights used in the NAEP operational analysis.  
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The skill profiles for subgroups from the 2003 assessment were compared between Y1 

calibration and Strategies 1 and 2. The differences in estimated marginal skill distributions are 

shown in Figures 11 and 12. In each graph, the subgroups are represented by a capitalized initial 

letter. 

 
Figure 11. Differences in marginal skill profile: separate versus Strategy 1 (2003).  

Note. A, B, F, H, M, and W stand for Asian, Black, female, Hispanic, male, and White student 

groups, respectively. 

 
Figure 12. Differences in marginal skill profile: separate vs. Strategy 2 (2003).  

Note. A, B, F, H, M, and W stand for Asian, Black, female, Hispanic, male, and White student 

groups, respectively. 
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Although the differences between Y1 calibration and Strategy 2 (shown in Figure 12) 

might be considered to be small (within range of -0.04 and 0.04), the difference between Y1 

calibration and Strategy 1 (shown in Figure 11) are even smaller. It can be shown that Strategy 1 

leads to an almost identical scale with the scale from Y1 calibration.  

The skill profiles for subgroups from the 2005 assessment were compared between 

Strategy 3 and Strategies 1 and 2. These differences are shown in Figures 13 and 14.  

 
Figure 13. Differences in marginal skill profile: Strategy 3 versus Strategy 1 (2005). 

 
Figure 14. Differences in marginal skill profile: Strategy 3 versus Strategy 2 (2005). 
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The results presented here demonstrate that Strategy 1 is much closer to Strategy 3 than 

Strategy 2 in terms of the estimated marginal skill profile for key subgroups. This may imply 

that, in the case of linking these two NAEP assessments under the GDM framework, a scale can 

be set and reproduced by fixing the values of the common items in these two assessments, even 

when there are only 25 (approximately 25% of the entire test) items in common.  

7. Discussion and Conclusion 

The noncontinuous nature of the skill locations in the GDM limits the search for 

appropriate linking methods. The research question that needs to be answered is what linking 

methods lead to a scale that is maintained across assessments Y1 and Y2. Certainly, the bridge 

between target (Y2) and baseline year (Y1) is built through common items, but the nature and 

extent of the necessary constraints are not self-evident. Thus, three different strategies were 

compared in this study. As mentioned in Section 3, these three strategies are variations from the 

concurrent calibration linking used in NAEP operation. Often, a concurrent calibration linking 

consists of three steps of calibration and transformation. Strategy 2 in this study is indeed the 

first step of the concurrent calibration linking, since the other steps are dropped intentionally due 

to their inappropriateness for discrete latent skills/abilities. Strategy 1 produces a stronger link 

than Strategy 2 by fixing the common items parameters at known values from Y1 calibration in 

addition to the concurrent calibration. Strategy 3 is a simplified version of Strategy 1 by 

dropping the concurrent calibration and keeping the common item parameters fixed at known 

values from Y1 calibration. In fact, Strategy 3 will be identical to Strategy 1 if there is no 

constraint imposed on the item parameter estimation procedure. Even when certain constraints 

are put in the estimation process, only slight differences can be observed for Strategy 1 and 

Strategy 3, as shown in Figures 7 to 10 and Figure 13. 

All results in this study empirically demonstrate that one strategy of linking, the 

concurrent calibration of two adjacent assessments, is not necessary when the common items are 

fixed at the values obtained from Y1 calibration. The similar results even hold up in the case 

where common items consist of only 25% of the whole NAEP assessment. This result, however, 

should not be generalized, since it may not hold up in studies with different procedures for 

assessment development, block formation, item flagging, and selection for subsequent 

assessment.  
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In order to make sure the conclusion is true for the case where only 25 items are in 

common to both tests, two additional analyses were carried out based on different sets of 25 

items. Similar results were obtained to those shown in this paper. The authors also analyzed data 

from a Grade 8 NAEP reading assessment in 2003 and 2005. Similar conclusions were drawn 

from these analyses.  

Even though the purpose of this paper was not focused on model comparisons, we have 

to mention one special model case where only two levels (mastery and nonmastery) are specified 

for each cognitive skill. The authors ran such cases and found out, in this case, the concurrent 

calibration of 2003 and 2005 assessments as in Strategy 2 is able to reproduce the scale 

established by Y1 calibration.  

As discussed in a previous section, the analysis is conducted based on a single-group 

assumption, assuming only one skill distribution. A future study will focus on an analysis based 

on a multiple-group assumption coupled with Strategy 3. Under the multiple-group assumption, 

subgroups are assigned unique and potentially different prior distributions, so that the skill 

profiles for subgroups are directly calculated by rerunning the software. An initial investigation 

of applying GDM to NAEP data (Xu & von Davier, 2006) showed that the multiple-group 

analysis yields similar results for racial subgroups and gender subgroups as those from NAEP 

operational analyses. A future study will be able to answer further questions, such as whether a 

comparable scale can be established by Strategy 3 when employing a GDM multiple-group 

analysis procedure.  
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